Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam August 2018: Problem 3 Solution

Exercise. Let $\pi(x, y) = x$ denote the projection of \mathbb{R}^2 onto \mathbb{R} , and let $\pi(A)$ denote the image under π of a subset of A of \mathbb{R}^2 .

(a) Let μ^* be an outer measure on the subsets of \mathbb{R} . Show that $\nu^*(A) := \mu^*(\pi(A))$ is an outer measure on the subsets of \mathbb{R}^2 .

Solution. ν^* is an **outer measure** if • $\nu^*(A) \ge 0$ for $A \subseteq \mathbb{R}^2$ ν(Ø) = 0
ν*(A) ≤ ν*(B) if A ⊆ B
ν*(∪₁[∞]A_j) ≤ Σ₁[∞] ν*(A_j) • Let $A \subset \mathbb{R}^2$. Then $\nu^*(A) = \mu^*(\pi(A)) \ge 0$, since μ^* an outer measure on \mathbb{R} and $\pi(A) \subseteq \mathbb{R}$. • $\nu^*(\emptyset) = \mu^*(\pi(\emptyset)) = \mu^*(\emptyset) = 0$ • If $A \subseteq B$ then $\pi(A) \subseteq \pi(B)$ since $x \in \pi(A) \implies (x, y) \in A$ for some $y \in \mathbb{R}$ $\implies (x, y) \in B$ $\implies x \in \pi(B)$ $\nu^*(A) = \mu^*(\pi(A)) \le \mu^*(\pi(B)) \quad \text{since } \pi(A) \subset \pi(B) \text{ and } \mu^* \text{ an outer measure}$ = $\nu^*(B)$ $\nu^*(\cup_1^\infty A_j) = \mu^*(\pi(\cup_1^\infty A_j))$ $= \mu^*(\cup_1^\infty \pi(A_j))$ $=\sum_{1}^{\infty} \mu^*(\pi(A_j))$ $=\sum_{1}^{\infty} \nu^*(A_j)$

Thus, ν^* is an outer measure on \mathbb{R}^2 .

(b) Let λ^* be Lebesgue outer measure on the subsets of \mathbb{R} , and let $\rho^*(A) = \lambda^*(\pi(A))$. Show that if $A = B \times \mathbb{R}$, where B is a Lebesgue measurable subset of \mathbb{R} , then A is a ρ^* measurable set. Show where the assumption that A has this particular form is used.

Solution.
A is ρ^* -measurable iff $\rho^*(E) = \rho^*(E \cap A) + \rho^*(E \cap A^C)$ for all $E \subset X$. Let $A = B \times \mathbb{R}$, where B is Lebesgue measurable subset of \mathbb{R} , and let $E \subseteq \mathbb{R}^2$, $E = E_1 \times E_2$.
$\rho^*(E) = \lambda^*(\pi(E)) = \lambda^*(E_1)$
$\rho^*(E \cap A) + \rho^*(E \cap A^C) = \lambda^*(\pi(E \cap A)) + \lambda^*(\pi(E \cap A^C))$
$=\lambda^*(\pi((E_1\times E_2)\cap (B\times\mathbb{R})))+\lambda^*(\pi((E_1\times E_2)\cap (B\times\mathbb{R})^C))$
$= \lambda^*(E_1 \cap B) + \lambda^*(E_1 \cap B^C)$
$=\lambda^*(E_1)$
$= ho^*(E)$