Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam
 August 2018: Problem 3 Solution

Exercise. Let $\pi(x, y)=x$ denote the projection of \mathbb{R}^{2} onto \mathbb{R}, and let $\pi(A)$ denote the image under π of a subset of A of \mathbb{R}^{2}.
(a) Let μ^{*} be an outer measure on the subsets of \mathbb{R}. Show that $\nu^{*}(A):=\mu^{*}(\pi(A))$ is an outer measure on the subsets of \mathbb{R}^{2}.

Solution.

ν^{*} is an outer measure if

- $\nu^{*}(A) \geq 0$ for $A \subseteq \mathbb{R}^{2}$
- $\nu(\emptyset)=0$
- $\nu^{*}(A) \leq \nu^{*}(B)$ if $A \subseteq B$
- $\nu^{*}\left(\cup_{1}^{\infty} A_{j}\right) \leq \sum_{1}^{\infty} \nu^{*}\left(A_{j}\right)$
- Let $A \subset \mathbb{R}^{2}$. Then $\nu^{*}(A)=\mu^{*}(\pi(A)) \geq 0$, since μ^{*} an outer measure on \mathbb{R} and $\pi(A) \subseteq \mathbb{R}$.
- $\nu^{*}(\emptyset)=\mu^{*}(\pi(\emptyset))=\mu^{*}(\emptyset)=0$
- If $A \subseteq B$ then $\pi(A) \subseteq \pi(B)$ since

$$
\begin{aligned}
x \in \pi(A) & \Longrightarrow(x, y) \in A \text { for some } y \in \mathbb{R} \\
& \Longrightarrow(x, y) \in B \\
& \Longrightarrow x \in \pi(B)
\end{aligned}
$$

- $\quad \nu^{*}(A)=\mu^{*}(\pi(A)) \leq \mu^{*}(\pi(B)) \quad$ since $\pi(A) \subset \pi(B)$ and μ^{*} an outer measure $=\nu^{*}(B)$
-

$$
\begin{aligned}
\nu^{*}\left(\cup_{1}^{\infty} A_{j}\right) & =\mu^{*}\left(\pi\left(\cup_{1}^{\infty} A_{j}\right)\right) \\
& =\mu^{*}\left(\cup_{1}^{\infty} \pi\left(A_{j}\right)\right) \\
& =\sum_{1}^{\infty} \mu^{*}\left(\pi\left(A_{j}\right)\right) \\
& =\sum_{1}^{\infty} \nu^{*}\left(A_{j}\right)
\end{aligned}
$$

Thus, ν^{*} is an outer measure on \mathbb{R}^{2}.
(b) Let λ^{*} be Lebesgue outer measure on the subsets of \mathbb{R}, and let $\rho^{*}(A)=\lambda^{*}(\pi(A))$. Show that if $A=B \times \mathbb{R}$, where B is a Lebesgue measurable subset of \mathbb{R}, then A is a ρ^{*} measurable set. Show where the assumption that A has this particular form is used.

Solution.

A is ρ^{*}-measurable iff $\rho^{*}(E)=\rho^{*}(E \cap A)+\rho^{*}\left(E \cap A^{C}\right.$ for all $E \subset X$.

$$
\begin{aligned}
\rho^{*}(E)=\lambda^{*}(\pi(E)) & =\lambda^{*}\left(E_{1}\right) \\
\rho^{*}(E \cap A)+\rho^{*}\left(E \cap A^{C}\right) & =\lambda^{*}(\pi(E \cap A))+\lambda^{*}\left(\pi\left(E \cap A^{C}\right)\right) \\
& =\lambda^{*}\left(\pi\left(\left(E_{1} \times E_{2}\right) \cap(B \times \mathbb{R})\right)\right)+\lambda^{*}\left(\pi\left(\left(E_{1} \times E_{2}\right) \cap(B \times \mathbb{R})^{C}\right)\right) \\
& =\lambda^{*}\left(E_{1} \cap B\right)+\lambda^{*}\left(E_{1} \cap B^{C}\right) \\
& =\lambda^{*}\left(E_{1}\right) \\
& =\rho^{*}(E)
\end{aligned}
$$

